Crystallographic Approach to the Origin of "Syn-Effect" 1)

Katsuhiko INOMATA, * Takaki HIRATA, Yoshihiro SASADA, Takahiro ASADA, Hitoshi SENDA, † and Hideki KINOSHITA

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920 [†]Department of Chemistry, College of Liberal Arts, Kanazawa University, Kanazawa 920

It was revealed by X-ray crystallography that α -unsubstituted (E)-vinyl sulfones have syn-conformation which seems to be the cause of "syn-effect" found in the conversion of (E)-vinyl sulfones to the corresponding allyl sulfones with a base under mild conditions. Syn-conformation of a terminal olefin in solid state was also confirmed.

In the previous papers, $^{2a,b)}$ we reported the regio- and stereoselective syntheses of (E)- and (Z)-vinyl sulfones and their conversion to the corresponding allyl sulfones under the mild basic conditions, and it was found that (E)-vinyl sulfone preferentially affords (Z)-allyl sulfone as a kinetically-controlled product, while (Z)-vinyl sulfone and α -substituted vinyl sulfone give (E)-allyl sulfones exclusively. The latter fact may be due to the steric congestion which precludes the possibility of a stabilizing syn-interaction between the α - and δ -positions. 3d

The former experimental results were rationalized by the new concept "conformational acidity" (a sort of kinetic acidity), $^{2a,b)}$ which essentially depends on a "syn-effect" within the cases of the conversion discussed so far. The relative degree of the "syn-effect" was further determined by the stereochemical investigation on the conversion of various kinds of γ -substituted (E)-vinyl sulfones with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to the corresponding allyl sulfones as follows: $CH_3O^- \ge AcO^- > CH_3^- > CH_2^- >> t$ -Bu- and Ph-.

Several explanations for the "syn-effect" have been proposed, $^{3b)}$ namely (1) 6π -electron homoaromaticity, (2) σ -orbital interactions, (3) dipole-dipole interactions, (4) chelations, and (5) hydrogen bonding. Regarding these problems, we have performed X-ray crystallography for 2-ethyl-1-tosyl-1-butene (1), which afforded exclusively (Z)-2-ethyl-1-tosyl-2-butene by treatment with DBU, and found that "syn-effect" worked in 1 itself as shown in Fig. 1. Co) Herein we wish to report the new results of the crystallographic studies on the other α -unsubstituted (E)-vinyl sulfones and a crystalline terminal olefin derivative.

Since methoxy group has been proven to be the most effective one for "syn-effect" as described above, $^{2c)}$ the conversion of the similar vinyl sulfones, (E)-3-phenoxy- and (E)-3-ethoxy-1-tosyl-1-propenes ($\underline{2a,b}$), to the corresponding allyl sulfone derivatives ($\underline{3a,b}$) was examined by using DBU as a base. The time-course of the reaction shown in Table 1 revealed that $\underline{2a,b}$ afford exclusively (Z)-3a,b, especially at higher selectivity at the initial step of the reaction. These

Fig. 1. Stereoscopic view of 2-ethyl-1-tosyl-1-butene (1).

results strongly suggested the possibility that $\underline{2a,b}$ have the syn-conformation as well as $\underline{1}$. In order to confirm the structure of $\underline{2a}$, X-ray crystallography was performed (Fig. 2). It was found that H1, C1, C2, C3, O3 and H5, C17, C18, C19, O6 exist on a plane, respectively, and that "syn-effect" works in the solid state of $\underline{2a}$. The syn-conformation seems to arise from the intramolecular hydrogen bonding between the rather acidic α -hydrogens (H1 and H5), neighboring to the electron withdrawing tosyl group, and oxygens (O3 and O6) using the electron pairs of their sp 2 orbitals (O3-H1 2.36 Å, O6-H5 2.39 Å) or dipole-dipole interaction between C_{sp}^2 +H and C→OR. However, 6π -electron homoaromaticity should not be excluded in spite of the long distances of O3-C1 (2.72(2) Å) and O6-C17 (2.78(2) Å), because there are p-orbitals on oxygen atoms (O3 and O6) conjugating with a phenyl group, which appear to correspond to the pseudo-porbital of the methyl group useful to stabilize syn-conformation of $\underline{1}$ in which the intramolecular hydrogen bonding is impossible.

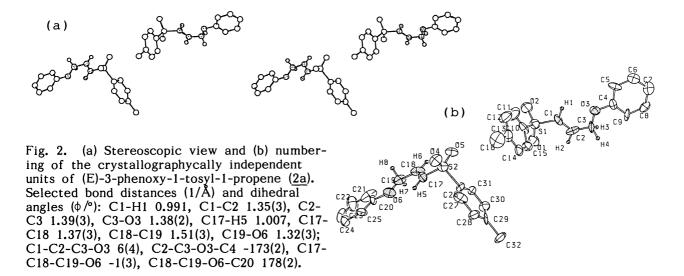

Though the comparison of the structure of $\underline{2b}$ with $\underline{2a}$ was therefore required, $\underline{2b}$ was oil at

Table 1. Conversion of (E)-3-Phenoxy- and (E)-3-Ethoxy-1-tosyl-1-propenes ($\underline{2a,b}$) to the Corresponding 1-Tosyl-2-propene Derivatives ($\underline{3a,b}$) with DBU

$_{R}$ \sim $_{Ts}$	DBU (2 equiv.)	$_{R}$
R=PhO, <u>2a</u> R=EtO, <u>2b</u>	in CH ₃ CN, 25 °C	R=PhO, <u>3a</u> R=EtO, <u>3b</u>

<u>2</u> Time	m/.	Products ratio ^{a)}			Isolated total
	(E)- <u>2</u>	(E)- <u>3</u>	(Z)- <u>3</u>	yield of $3/%$	
0 min 30 min 2a 2 h 12 h 96 h	0 min	100	0	0	_
	30 min	0	3	97	quant.
	2 h	0	3	97	_
	12 h	0	4	96	_
	0	8	92	-	
0 min 30 min	0 min	100	0	0	_
	30 min	27	2	71	_
	1 h	6	4	90	_
2b 2 h 3 h 6 h 24 h 72 h	0	5	95	_	
	3 h	0	5	95	97
	6 h	0	4	96	_
	24 h	0	4	96	_
	72 h	0	4	96	

a) Determined by 400 MHz H-NMR spectra.

room temperature. Fortunately, (E)-3-tosyl-2-propenal ethylene acetal ($\underline{4}$) similar to $\underline{2b}$ gave the single crystal suitable for X-ray analysis (Fig. 3). Once again it was found that $\underline{4}$ has synconformation (O4-C8 2.788(5) Å, O4-H8 2.56(4) Å) in spite of the lack of p-orbital on the oxygen atom (O4). Ultimately, the syn-conformation of $\underline{2a}$, the origin of "syn-effect" observed in the conversion of the (E)-vinyl sulfones to the corresponding allyl sulfones with DBU, cannot be ascribed to 6π -electron homoaromaticity but intramolecular hydrogen bonding or dipole-dipole interaction.

However, the question why the "syn-effect" was observed for (E)-vinyl sulfones such as $\underline{1}$ having no phenoxy or alkoxy group on γ -position remains. Therefore, X-ray crystallography of the terminal olefin ($\underline{5}$) having 2-naphthalenesulfonyl group as a crystallizing auxiliary was performed (Fig. 4). The syn-conformation was surprisingly observed (C13-C16 2.94(1) Å, C13-H17 2.67(10) Å, C16-H12 2.87(5) Å, C16-H13 2.93(4) Å) again, contrary to the reported preferable structure of 1-butene, CH₃-skew (83% of rotamer population). Although the structure of $\underline{5}$ is only of the solid state [its packing diagram is shown in Fig. 4(c)] till now, it is very suggestive regarding the syn-conformation of the olefinic compounds. Related works including the structure of 5 in solution are further in progress in our laboratory.

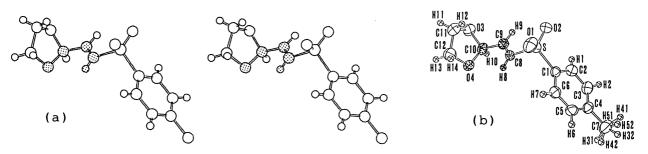
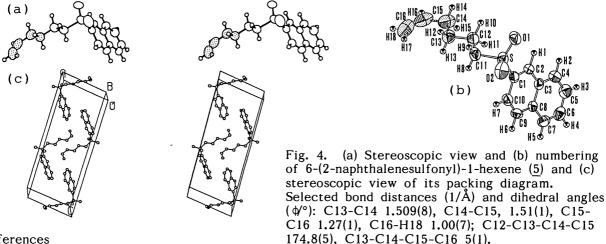



Fig. 3. (a) Stereoscopic view and (b) numbering of (E)-3-tosyl-2-propenal ethylene acetal $(\underline{4})$. Selected bond distances (1/Å) and dihedral angles $(\phi/^{\circ})$: C8-H8 0.85(4), C8-C9 1.302(6), C9-C10 1.500(6), C10-O3 1.405(5), C10-O4 1.406(5); C8-C9-C10-O4 5.1(6), C9-C10-O4-C12 97.9(4). The methyl group centered at C7 suffered from twofold disorder with half occupancy for two sets of hydrogen atoms.

References

- 1) It means here the effects to stabilize syn-conformations against the steric hindrance.
- 2) a) K. Inomata, S. Sasaoka, T. Kobayashi, Y. Tanaka, S. Igarashi, T. Ohtani, H. Kinoshita, and H. Kotake, Bull. Chem. Soc. Jpn., 60, 1767 (1987); b) T. Kobayashi, Y. Tanaka, T. Ohtani, H. Kinoshita, K. Inomata, and H. Kotake, Chem. Lett., 1987, 1209; c) K. Inomata, T. Hirata, H. Suhara, H. Kinoshita, H. Kotake, and H. Senda, Chem. Lett., 1988, 2009.
- 3) a) D. Cremer, J. Am. Chem. Soc., 101, 7199 (1979); b) K. N. Houk, R. W. Strozier, N. G. Rondan, R. R. Fraser, and N. Chuaqui-Offermanns, ibid., 102, 1426 (1980) and references cited therein; c) E. Block, R. E. Penn, A. A. Bazzi, and D. Cremer, Tetrahedron Lett., 22, 29 (1981); d) E. Block, M. Aslam, V. Eswarakrishnan, K. Gebreyes, J. Hutchinson, R. Iyer, J.-A. Laffitte, and A. Wall, J. Am. Chem. Soc., 108, 4568 (1986); e) J. R. Larson, N. D. Epiotis, and F. Bernardi, J. Am. Chem. Soc., 100, 5713 (1978) and references cited therein.
- 4) <u>2a</u>, Mp 70 °C (from i-PrOH). Crystal data: $C_{16}H_{16}O_3S$, FW=288.4, Z=8, monoclinic, space group $P2_1/n$, a=16.630(4), b=7.669(2), c=24.046(7) Å, β =92.88(2) °, U=3063(2) Å³, Dc=1.25 g/cm³, F(000)=1216, μ (Mo-K α)=2.15 cm⁻¹. Intensities were measured on a Rigaku AFC-5R diffractometer using Mo-K α radiation within 2θ =45 ° and θ -2 θ scan method. Observed independent reflections of 982 with I>30(I) were used in the structure analysis and refinement applying TEXSAN program system. The final R factor was 0.070.
- 5) 4, Mp 107 °C (from i-PrOH). This compound could not be converted to the allylsulfone by treatment with DBU, probably due to the unstable ketene acetal structure of the product. Crystal data: $C_{12}H_{14}O_4S$, FW=254.3, Z=2, monoclinic, space group P2₁, a=5.489(1), b=7.824(2), c=13.877(2) Å, β =90.95(1) °, U=595.8(2) Å³, Dc=1.42 g/cm³, F(000)=268, μ (Mo-K α)=2.71 cm⁻¹; Rigaku AFC-5R, 2θ =55°, θ -2 θ scan method, number of observation=1077 (I>3 σ (I)), TEXSAN program system, R=0.034.
- 6) <u>5</u>, Mp 70.5-71.0 °C (from EtOH/H₂O). Crystal data: $C_{16}H_{18}O_2S$, FW=274.4, Z=4, monoclinic, space group $P2_1/c$, a=9.817(4), b=5.770(6), c=25.97(1) Å, β =100.34(3) °, U=1447(2) Å³, Dc=1.26 g/cm³, F(000)=584, μ (Mo-K α)=2.09 cm⁻¹; Rigaku AFC-5R, 2θ =55 °, θ -2 θ scan method, number of observation=1309 (I>30(I)), TEXSAN program system, R=0.049.
- 7) D. Van Hemelrijk, L. Van den Enden, H. J. Geise, H. L. Sellers, and L. Schaefer, J. Am. Chem. Soc., 102, 2189 (1980). (Received August 13, 1990)